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Abstract

In this paper, we develop a Vision Transformer
based wisual odometry (VO), called ViTVO. ViTVO
introduces an attention mechanism to perform visual
odometry. Due to the nature of VO, Transformer
based VO models tend to overconcentrate on few points,
which may result in a degradation of accuracy. In ad-
dition, noises from dynamic objects usually cause dif-
ficulties in performing VO tasks. To overcome these
issues, we propose an attention loss during training,
which utilizes ground truth masks or self supervision to
guide the attention maps to focus more on static regions
of an image. In our experiments, we demonstrate the
superior performance of ViTVO on the Sintel valida-
tion set, and validate the effectiveness of our attention
supervision mechanism in performing VO tasks.

1 Introduction

VO is a crucial process for various applications, but
conventional VO methods often face challenges in envi-
ronments with dynamic objects, leading to degradation
in accuracy. To address this issue, VO methods based
on convolutional neural networks (CNNs) have been
explored, utilizing additional dynamic masks to filter
out noise from moving objects. However, these meth-
ods still suffer from some drawbacks, such as not always
focusing on static regions or requiring additional seg-
mentation models for detecting dynamic regions [1-5].

Self-attention based mechanisms have been inves-
tigated to enable deep learning-based VO models to
focus on static regions. These mechanisms utilize self-
attention layers to guide the models, allowing them
to have relatively wider fields of view and better
distinguish between dynamic and static regions than
pure CNN-based approaches [1, 6, 7]. Among these,
Transformer-based VO methods have gained promi-
nence due to the successes of Vision Transformer (ViT)
in various vision tasks [8-12]. However, these models
still suffer from overly focusing on a sparse set of pixels.

To tackle this issue, we propose a new Vision
Transformer-based visual odometry approach called
ViTVO, which adopts an extra attention supervision
mechanism to enforce the model to focus on the static
regions of the image. With this attention supervision,
our ViTVO can extract global information in earlier
layers and stably attend to static regions, as in Fig. 1.

We validate the effectiveness of the proposed ViTVO
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Figure 1: The attention maps of ViTVO w/ and w/o the use of
the proposed attention loss via the highlighted patch regions.

through a series of experiments, comparing it to other
baselines. We train all models on a dataset generated
by the data generation workflow proposed in [13] and
validate them on the Sintel dataset [14]. The quan-
titative results show that ViTVO delivers better VO
performance in terms of rotational and translational
errors, and the saliency maps further validate the effec-
tiveness of the proposed attention supervision method.

2 Preliminary

In this section, we highlight the issues of conven-
tional VO techniques and introduce the main moti-
vations behind our proposed methodology. As dis-
cussed in Section 1, dynamic objects might cause noises
for VO models, while such models have traditionally
been implemented by either CNN based approaches [1-
7, 13, 15, 16] or Transformer based approaches [8-12].
Although those prior arts have achieved promising per-
formance, they inherently suffer from several issues
that prevent them from being able to effectively elim-
inate the impacts of dynamic objects. We next elabo-
rate on the above issues separately as in the following.

CNN is deficient in attention capability. Due to
architectural limitations, CNN based VO models gen-
erally lack effective manners to deal with the influences
of dynamic objects. As a CNN model tend to regress
itself and optimize its final projection, such an objec-
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Figure 2: The saliency maps of VONet for testcases of Sintel [14].

tive does not necessarily encourage a CNN to filter out
the regions of dynamic objects, unless it is tailored to
do so. This deficiency might cause CNN based VO
models prone to be affected by dynamic objects, espe-
cially when those objects occupy a significant portion
of an image. Without correct clues about background
regions to be referenced, they could predict incorrectly
under such scenarios and potentially be misguided.
To demonstrate the above issue, we select a recent
CNN based VO approach, called VONet [17], to illus-
trate the attention regions focused by it. Fig. 2 visual-
izes the saliency map of VONet on some testcases from
the Sintel dataset [14], and compares the prediction er-
rors of different cases. It can be observed from Fig. 2
that the prediction errors of the first three rows, which
correspond to the cases with dynamic objects, are rela-
tively higher than those from the bottom row, in which
VONet is not mislead by dynamic objects. In addition,
even for image frames from the same video clip (i.e,
the third and the fourth rows), VONet may focus on
either the foreground or background regions, as illus-
trated in Fig. 2. This causes the prediction errors of
VONet to fluctuate across different image frames. Al-
though some researchers proposed to incorporate addi-
tional attention mechanisms to CNN-based models, the
performance enhancement is still limited [1, 6, 7, 18].

The nature of VO causes Transformers to be
over-concentrated. To borrow the benefits of the
attention mechanism and to overcome the limita-
tions posed by CNN-based VO models, some re-
cent researchers turned their focus and introduced
Transformer-based VO techniques [8-12], and were
able to deliver promising results. Nevertheless, due to
the self-attention nature of Transformers, such mod-
els tend to concentrate on only few points, as depicted
in Fig. 1 (e). The rationale is that according to the
perspective-n-point (PnP), only few paired correspon-
dences in certain background area are feasible for VO
approaches to infer the camera motion, even being in
lack of any global information. In practice, however,
overly relying on certain points for VO prediction may
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Figure 3: An overview of the proposed ViTVO framework.

cause Transformer-based VO models to lose generaliz-
ability, as the camera pose changes derived from those
points might be biased and vulnerable to noises or im-
perfect feature extraction. Moreover, the above ten-
dency is not advantageous to model training, as the
mechanism of Transformers is formulated as follows:

DSA(z)  0SA(z)
awe YT (1)

where SA(:) represents the self-attention function, «
is the attention weights, z is the input feature em-
bedding before each transformer block, and W is the
weights for projecting z to the values v of a Trans-
former block [19]. It can be observed that the at-
tention derivative has positive correlation with a. If
the attention weights « is overly concentrated on cer-
tain specific points, only a limited set of parameters
can be effectively updated during each training iter-
ation. This, in turn, can result in slow convergence.
The above issues motivate us to investigate solutions
to Transformer-based VO models.

2.1 ViTVO

Fig. 3 depicts an overview of the ViTVO framework.
Given an optical flow map F; derived from two image
frames I; and I;y1, and a depth map D; of I;, the
main objective of the ViTVO framework is to infer the
corresponding camera rotation R; and translation 7;.

2.1.1 The refined self-attention module

The attention weights a in each encoder layer are
computed based on the pairwise similarity between
the respective key K and query (), and are used to
scale the values V. The procedure of the self-attention
scheme can be formulated as SA(z) = aV, where

« = softmax (Q—;{;), and d is the scaling factor that

represents the dimension of the key embedding for nor-
malizing the dot-product value of the query @ and key
K. To encourage the model to focus more on the static
regions for prediction, an additional attention loss is
applied at all of the encoder layers for refining the at-
tention weights a. The weights of different patches are
coalesced to form the attention weight map A as:

A = concat([a®, o, ..., a™]). (2)
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In order to meet the attention supervision objective
discussed above, this coalesced attention weight map A
can be refined and guided during the training phase by
either (a) a binary cross entropy loss, or (b) a regular-
izer term. These types of losses are applied to scenarios
when explicit supervision annotations exist or not.

Binary cross entropy for supervision. We com-
pare A with the ground truth static mask M, and treat
it as a segmentation task which contains two classes
(i.e., static and dynamic regions). The binary cross
entropy loss is expressed as follows:

L
Lyce = M -log A+ (1—M)-log(1— A). (3)
=1

Regularization for self-supervision. If the ground
truth static mask is not available, the attention map A
can still be supervised by a regularization loss term as:

L N
Lrey= =3 S (A /mac(ALD)/N, (@)

=1 j=0

where A;[j] represents o/ from the I*" layer of the en-
coder. This loss function design can prompt the atten-
tion map A to cover as many static regions as possible,
and prevent the situation that A only concentrates on
certain patch regions.

2.1.2 MLP Decoder for Regression

The extracted features z; from the last encoder
block is used for performing a regression task to pre-
dict the rotation R; and the translation 7; vectors of
the camera. Similar to BERT’s and ViT’s [class] token,
a learnable embeddings is prepended to the sequence
of the embedding patches (i.e., z) = @,¢4) to indicate
that the output from the last layer of the transformer
encoder 2z is used to serves as the feature representa-
tion. This feature representation is then used for pre-
dicting the final camera pose R; and 7;. Two separate
MLP layers are employed to generate these predictions,
which can be formulated as the following,

Ri = MLP(LN(27)), (5)
Ti = MLP(LN(z2)), (6)

where LN stands for the layer normalization operation.

The loss function used for optimizing the model is
a supervised Lo-norm loss, which calculates the differ-
ence between the six degrees of freedom (DoF) ground

truth pose (R;,7;) and the predicted pose (R;, 7;),
which is denoted as Lpose-

2.2 Total Loss Function
The total loss of ViTVO is expressed as follows:

‘Ctotal - Epose + )\attnﬂattna (7)

where Aqi¢p, 1s a scaling factor. Lgsey, is set to Lpee when
the ground truth static masks are available. Otherwise,
Lattn is set to L4 for performing self supervision.

3 Experimental Results

3.1 Evaluation Metrics

The following evaluation metrics are adopted for
measuring the performance in the experiments: (1) the
average Lq rotational error R.,.. and the average L.
translational error Ty, and (2) the mean intersection
over union (mloU) between the ground truth static
mask M and the predicted binary mask generated from
the attention map of ViTVO. In order to achieve this,
an attention weight map A is turned into a predicted
binary mask M# according to the values of each pixel
entry, expressed as the following equation:

1 if ||A]| > €
M4 = 8
{0, otherwise, (8)

where the comparison with threshold € is carried
out in a pixel-wise fashion. To determine the value
of €, we first design a set of candidate thresholds
{€1,€2,+-+ ,en}, and use them to predict a set of bi-
nary masks { M}, M3',--- M#}. We then compute a
coarse static mask M;,;; according to [20, 21], and se-
lect a €;,i € [1, N] that generates a prediction mask
MZA with the highest mIoU with Mj,,;;. MZ»A is used to
compute the final mloU with the ground truth M.

3.2 Quantitative Results

In this section, we compare the proposed ViTVO
against the VONet [17] and the PWVO [13] baselines,
and report the quantitative results in Table 1. We pro-
vide two versions of ViTVO for comparison: with an
without the use of D;;; as its input. It can be ob-
served that our proposed ViTVO is able to outperform
the VONet baseline in terms of R, and T,,, by con-
siderable margins. To fairly compare with PWVO, we
additionally introduce a depth map D;y; to to input
of ViTVO. The results indicate that ViTVO is able to
achieve better performance than PWVO in terms of
R, but is unable to outperform PWVO in terms of
Terr. The rationale behind this might be due to the
fact that PWVO additionally employs an ego flow loss
during training [13], which causes PWVO to be sensi-
tive to the predictions of pose translation. Therefore,
PWVO might tend to optimize the translational errors,
resulting in its better performance in terms of T,,...

3.3 Qualitative Results

Visualization of the saliency map In this section,
we compares the attention weight map A with the
saliency map generated from the baseline VONet with
the Grad-CAM [22] approach. Both maps highlight
the regions that contribute to the final prediction of
the camera poses and can be referred as an evidence
for understanding the focus areas of the models. The
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Figure 4: A comparison of ViTVO and VONet through their saliency maps. It can observed that the predicted masks from ViTVO
(i-e., column (c), which are derived according to Eq. (8)) are highly correlated with the ground truth static masks (i.e., column (b)),

which validates the effectiveness of our approach.

Table 1: Comparison of ViTVO and the baselines in terms of
Rerr and Terr. It can be observed that ViTVO outperforms
VONet when using the same inputs, and delivers better perfor-
mance than PWVO in terms of Repr.

Input Error
]:i Dz Di+1 K Rerr Terr
VONet |V 0.145  0.141
PWVO |V vV v v |0081 0.043
ViTvo | ¢V vV 0.071  0.092
vitzvo | v vV 0.064 0.075

results are shown in Fig. 4. It can be observed the
predicted masks M;! and the attention weight map A
from our proposed ViTVO closely aligns to the ground
truth static mask M. On the other hand, the saliency
maps generated from VONet sometimes highlight the
regions that dynamic objects located in, which may po-
tentially affect the quality and correctness of the final
prediction as discussed in the Sec. 2. It is worth to
be noted that, as shown in the third and forth rows of
Fig. 4, the saliency maps from VONet highlight com-
pletely inverse regions even when the input optical flow
map is similar and is from consecutive frames. On the
contrary, the proposed ViTVO generate consistent at-
tention weight map and implies that the ViTVO could
perform more stable than VONet.

3.4 Ablation Study

In this section, we ablatively examine the effective-
ness of our proposed attention loss, and report the re-
sults in Table 2. As described in Section 2.1, Lain
is set to the binary cross entropy loss Lp.. when the
ground truth static masks are available. Otherwise,
it is set to the regularization loss L,.4. The second
row of Table 2 suggests that by simply applying the
attention loss term L,., during training, the perfor-
mance improves considerably. Moreover, the third row
reveals that by setting an appropriate value of Agsen,

Table 2: An analysis for the effectiveness of the proposed Agtin.-
The results are evaluated on the validation sets of Sintel [14].

Loss Design Rerr Terr mloU
w/o Lattn 0.162 0.113 3.202
w/ Lreg (Aattn = 1.00) 0.078 0.092 69.87
w/ Lreg (Aattn = 0.35) 0.075 0.090 77.94
w/ Lpce (Aattn = 0.05) 0.071 0.083 78.54

the performance in terms of Reyp, Teryr, and mloU can
be further enhanced. If the ground truth static masks
are available (i.e., Ly is adopted), VITVO is able to
achieve its best performance in terms of the three met-
rics, as shown in the fourth row of Table 2.

4 Conclusion

In this paper, we propose ViTVO, a Vision
Transformer-based VO framework that tackles a key
problem in conventional VO methods: dynamic objects
in input observations, which create difficulties in esti-
mating camera motions due to noise. Previous efforts
employed semantic mask strategies but suffered from
architectural limitations. To train ViTVO in identi-
fying noisy regions, we introduce an attention super-
vision mechanism that allows the model to focus on
static areas when performing VO tasks. We conducted
experiments on the Sintel validation set for ViTVO
and baseline approaches, along with ablation analyses
to support our design choices. Our quantitative and
qualitative results show that ViTVO achieves favor-
able outcomes, and even when trained on a synthetic
dataset, ViTVO can be transferred to an unfamiliar
Sintel validation set without requiring any fine-tuning.
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